Using Data to Integrate Traditional Ecological Knowledge into Forest Management

Klamath Fire Ecology Symposium Orleans, CA

May 10, 2017

Jill Beckmann

Karuk Tribe Department of Natural Resources

Western Klamath Restoration Partnership Shared Values

- 1. Fire Adapted Communities
- 2. Restored Fire Regimes
- 3. Healthy River Systems
- 4. Resilient Bio-diverse Forests/Plants/and Animals
- 5. Sustainable Local Economies
- 6. Cultural and Community Vitality

Where/Why? - Overlay Assessment

- Prioritization Scheme:
 - Roads/Ridges/Trails
 - Private Property
 - Elk habitat potential
 - Vegetation Types
 - Fire History
 - Slope/Insolation
 - Management History

Project Rationale / Principles

- Restore fire processes
- Retain and enhance legacy hardwoods, large diameter conifers, and 'cultural vegetation characteristics'
- Increase landscape heterogeneity to meet needs of a variety of species
- Improve safety of access/egress routes in case of wildfire
- Improve forest resiliency adjacent to private property
- Limit negative impacts to watersheds during implementation
- Improve health of riparian areas
- Provide diverse revenue streams for healthy economy

Somes Bar Integrated Fire **Management Project**

15

2

	<u>Number of</u> <u>Units</u>	<u>Total</u> <u>Acres</u>
Mechanical Treatment with		
<u>Restoration By-Products *</u>		
Doug-Fir Plantations	31	354
Pine Plantations	17	306
Non-Plantations	41	569
* will also receive fuels and Rx f	fire treatments	

Fuels and Fire Treatments

Masticate + Manual + Rx Burn		
Plantations	16	187
Manual + Rx Burn Planations	55	502
Manual + Rx Burn Non-Plantations	134	2,108
Rx Burn Plantations	8	106
Rx Burn Non-Plantations	29	1,381

Other Unique Treatments

Current Conditions / Historic Context

- Cultural Genocide
- Fire Suppression
- Hardwood deficit (Crawford et al. 2015)
- Increased vulnerability of encroached hardwoods (Cocking et al., 2012)
- Legacy of timber management
- Decline of Northern Spotted Owl and other species
- Boom and Bust Economy
- History of failed attempts at collaboration
- Climate Change

Traditional Ecological Knowledge

- "Animals taught us how to manage"
- Manage for all species, not just one
- Acknowledgement of interdependence of species
- Acknowledgement of and emphasis on familial relationship between Karuk people and native plants and animals
- Holistic view and approach
- Selection of Five Focal Species

www.fws.gov

Californiaherps.com

https://mavensnotebook.com

Photo: Kirsten Vinyeta

www.fws.gov

Data Collection

- LiDAR validation plots
- Common Stand Exam
- TEK data as part of archeological survey effort
- Food Crew Assessments
- Additional LiDAR-derived products

TEK data

Canopy Cover and TAO's from LiDAR

Percent Ladder Fuels from LiDAR

Kramer H, Collins B, Lake F, Jakubowski M, Stephens S, Kelly M (2016) Estimating Ladder Fuels: A New Approach Combining Field Photography with LiDAR. Remote Sensing 8:766.

Prescription Development

- Increase Heterogeneity (North and Sherlock, 2012)
 - Retention patches (5-10%)
 - Openings (10-20%)
 - Thinning area
 - Plantations variable density
 - Non-Plantations Release "Trees of Interest" by 50% and reduce Ladder Fuels
- Site-specific customization using TEK data and other info

Sample Mark, Unit 2400 / 2453

Marking Guides

Unit 2xxx 1969 Plantation Total Acres: 44 Elk Habitat – Foraging, Dry NSO Habitat – Mostly dispersal, some foraging

Insolation – Moderate Current CC – 97% Avg. Ladder Fuels – 34% Current BA DougFir – 149 ft²/ac Current Total BA – 200 ft²/ac Retain 50% CC

