Severity patterns and drivers of repeat fires along a fire interval gradient in the Klamath Mountains

> Jeffrey Kane Zawisza Grabinski Rosemary Sherriff

Photo credit: W. Harling

Recent Changes in Fire Activity

- Increasing frequency and size of wildfires
- Increasing fuel availability and expansion of the fire season

Need for More Fire

- Majority of fire-prone areas still in a fire deficit
- Increased recognition for the need of managed wildfire
- Need to assess and learn from the patterns and impacts of modern fires

Repeat Fires

- Areas that experience two or more fires that spatially overlap
- More repeat fires is ultimately desired
- Increased frequency may result in shorter fire return intervals than historical conditions
- Potential for altered fire severity patterns

Modern Fire Severity

• Some concerns for increased high severity fire

Controls of Fire Severity

Controls of Reburn Severity

Patterns of Reburn Severity

Gila-Aldo Leopold Wilderness, New Mexico (13 fires, 3-12 yrs, 50,004 ha) – Holden et al. 2012 Gila-Aldo Leopold Wilderness, New Mexico (50,0004 ha) – Parks et al. 2014 Frank-Church River of No Return Wilderness, Idaho (91,671 ha) – Parks et al. 2014

Northern Sierra Nevada, California (4 fires, 1-11 yrs, 36,423 ha) – Coppoletta et al. 2015

lillouette Creek Basin, Yosemite NP, California (9 fires w/ 2+, 8,000 ha) – van Wagtendonk et al. 2012 Northern Rocky Mountains (204 fires, 0-23 yrs, 138,061 ha) – Harvey et al. 2016

Patterns of Reburn Severity

- Changes in reburn severity must consider multiple drivers across different temporal and spatial scales
- Need to interpret change with vegetation type, fire regime, and desired future conditions

Objectives

- Examine temporal patterns of area burned and reburn severity in repeat fires
 - Patterns by year (1996-2012)
 - Patterns along fire interval gradient (2-25 yr)

 Determine the relative importance of factors that influence reburn severity at different scales

Repeat Fires in the Klamath Mountains in California

- 28 repeat fires between 1996 and 2012
- Wildfires only
- Total area = 79,112 ha (195,490 acres)
- Reburn Area: 397 11,818 ha
- Elevation: 194-2,221 m
- Time between repeat fires ranged from 2 to 25 years
- Historical Fire Return Interval
 - median 12-19 yr

Taylor and Skinner 1998

Annual Reburn Patterns

- No observed annual trend with reburn area ($R^2 = 0.08$, P = 0.14)
- No observed annual trend with reburn severity ($R^2 = 0.001$, P = 0.86)

Reburn Year

Time Between Fire Patterns

- Reburn area increased with time between fires ($R^2 = 0.24$, P = 0.009)
- No pattern observed with reburn severity ($R^2 = 0.028$, P = 0.397)

Time Between Fire Patterns

• Smaller reburn area with shorter interval repeat fires (F = 5.9, P = 0.02)

Prior and Reburn Severity Trends

All 28 repeat fires combined

Fire Severity by Elevation

Severity patterns with fire interval classes

Shorter Interval (2-14 y)

Longer Interval (19-25 y)

Controls of Reburn Severity

Reburn Severity Model Comparison

No pattern of increased reburn severity or area over time

- Shorter interval repeat fires smaller and maybe self-limiting
 - but will depend on fire weather
 - potential to inform Rx fire and managed wildfire treatments locations

Collins et al. 2009

- Prior and reburn severity positively related
 - Self-regulating?
 - Shorter interval>Longer Interval
- Modest increases in reburn severity
 - Shift to more moderate severity
- Multiple potential interpretations for modest increases in reburn severity
 - Need for increased severity? (Huffmann et al. 2017)
 - Increased shrub/open forest representation

Implications

Coppoletta et al. 2016

Summary of Findings

- Reburn severity is a complex result of multiple factors
 - Prior fire severity (longer > shorter interval)
 - Vegetation factors (longer > shorter interval)
 - Climatic factors (shorter > longer interval)
 - Topography factors lowest impact (no change with fire interval)

- Repeat fires still represents a small fraction of area burned
- Reburn severity is a complex result of multiple factors across temporal and spatial scales
 - Improves understanding and model development
 - Difficult to make concrete management suggestions

Future Research Needs

- Need for field-based observations to examine postrepeat fire vegetation and fuel changes
- Assess severity patch-sizes and heterogeneity
- Set clear and measureable desired conditions that can be used to interpret the impacts of repeat fires

Acknowledgements

USDA Forest Service, Klamath National Forest

Dan Blessing Ramona Butz Clint Isbell Jay Miller Carl Skinner Eric Knapp Jonathan Thompson James Graham Phil van Mantgem

This presentation did not have enough fire photos

