MKWC monthly Orleans meeting: Oct 1, 6:00 pm,

Collaborative fall Chinook Carcass Survey Training, Oct 4,

• MKWC monthly meeting: November 5, 6:00 pm Panamnik Building, 38150 Highway 96

October

November

Mission:

The Mid-Klamath Watershed Council is committed to restoring water and fishery habitat in the Mid-Klamath Watershed. It is a non-profit organization formed in 1994 to address the needs of the Mid-Klamath Watershed. The Council’s mission is to advance restoration projects and create local economic opportunities by planning and implementing restoration projects in the Mid-Klamath Watershed.

The Mid-Klamath Watershed Council
Panamnik Building, 38150 Highway 96
P.O. Box 409
Orleans, CA 95556

MID KLAMATH WATERSHED COUNCIL
News from the

News from the

NONPROFIT ORG
US POSTAGE PAID
P.O. Box 409
Orleans, CA 95556

Boxholder

The case against

James Foley - Property Rights Advocate

Social And Economic Impacts:

Our power producing dams provide Siskiyou County with $750,000 in annual tax revenue. Hundreds of property owners along the Klamath fear plummeting land values if the dams are removed and reservoirs drained. Siskiyou County has a seriously-depressed economy. Rural communities feel the most pain from these types of special interest agendas. Dismantling substantial operating structures (dams) that create good jobs, clean power and generate tax revenues to the County (which result in services and maintained structure in the rural communities) should not be done without very careful deliberation over the resulting benefits and liabilities.

While America’s environmental community seems to be on a mission to dismantle the very infrastructure which creates the foundation of our first-world economy, third world countries are constructing more modern infrastructure, and building dams to generate clean hydro-electric power, as fast as they can go up. Our governor has just announced a massive, multi-billion dollar project to increase water storage by building dams and water diversions. How much sense does it make to breach effective dams already in place while seeking to build others for the same reasons our dams exist and all the while preaching about the need for clean sustainable power?

Do we really want to dismantle the very structure that makes our nation great? Why? Less clean power generation can only result in more competition over a smaller supply. That will make costs go up, or create an emergency to generate more power through means that are more harmful to the environment than hydro-electric. Solar and wind power are touted as viable alternatives to hydro-electric but are not suitable for large scale production. Solar and wind are too intermittent to be reliable sources of power. Solar and wind power can only result in more competition over a smaller supply, making costs go up, or create an emergency to generate more power through means that are more harmful to the environment than hydro-electric.

How do we know dams are the reason for the salmon declines and removal will result in more fish?

As Tribes, fishermen, conservation groups, and others continue their push for the removal of the lower four Klamath Dams, communities along the Klamath are beginning to realize that there is real potential for success. Many residents are immediately overjoyed that we may actually take a bold step towards restoring the river, her fishery, and the economies that depend on it. For others, there are fears of flooding, power outages, and toxic sediment. Pundits and reporters have written a lot on this issue. I will try to address some key areas of concern and direct readers to primary data that address each point so folks can make a more informed decision.

How do we know dams are the reason for the salmon declines and removal will result in more fish?

First off it is important to understand that the runs of salmon today pale in comparison to historic levels which ranged from 500,000 to over a million fish. Although scientists and local elders attribute the decline to several factors including poor timber management, mining, and agricultural diversions, the impact of the dams become clear when the historic habitat of salmonids is evaluated. Coho, chinook, steelhead and lamprey all migrated to areas above Iron Gate Dam and salmon once spawned above Upper Klamath Lake in the Williamson, Sprague, and Wood Rivers. This habitat is completely unavailable to fish today.

In addition, dams degrade water quality affecting fish habitat downstream of the dams. Today, the Klamath reservoors act as a thermal sink, which means that the river warms more slowly in the spring and cools more slowly in the fall. Since salmon can only migrate upstream in the Klamath when the water temperature is

continued on page 2

continued on page 3

the straight story

Craig Tucker, PhD

Iron Gate Dam on the Klamath River, panorama by Thomas B. Dunklin; www.thomasbdunklin.com
alternatives to the generating capabilities of our dams. But the many studies regarding these as alternatives invariably show that they simply cannot meet the power demands of an ever growing society. Another thing that is never mentioned by dam removal activists is that solar and wind are not as clean as proponents make them out to be. The reason for this is simply the fact that coal or oil fired generators have to be kept online and in a state of readiness at all times to take up the slack for peak demand times. This is hardly a cleaner alternative, not to even mention the increased expense of building and maintaining this extra infrastructure. Who pays for this? You can bet that the environmental activists, who are so vocal in opposition to hydro-electric dams, will be nowhere to be found when it comes time to pay the bill.

• **Environmental Impacts.**

The dams that dam removal proponents want removed have been in place for almost one hundred years. In that time there is a whole eco-system that has been created by the dams in the upper basin. Dam removal will destroy this entire eco-system; it will be turned into a giant mud flat. The lakes above the dams provide a utopia for multitudes of animals, migratory birds, fish and even a number of endangered species. None of this is considered by those who have an agenda to remove the dams at any cost (to others).

In 2001, water to the irrigators in the upper basin was shut off to provide more water for the short nosed sucker. Is it ok to attempt to save one species of fish (salmon) at the expense and demise of another? Today the cry is “save the salmon,” in 2001 it was “save the sucker.” Then as now, those that will pay the price for mistaken overzealous ideas regarding salmon recovery will be the people of Siskiyou County. Just ask the farmers who lost everything over the 2001 water crisis what their opinion is.

What of the refuges and wetlands behind the dams? Environmental interests and others have crusaded for their creation and expansion for years; is it now ok to just do away with these hard won accomplishments without a second thought?

• **The “Save the Salmon” argument:**

The overriding impetus in support of dam removal is to save the Klamath River salmon fishery. There is no science that proves that dam removal will accomplish this goal. There is also no science to show that dam removal will not actually do more harm to salmon. There is no science showing that dams are responsible for salmon decline. There is historical evidence showing a 2% per year increase in salmon stocks, due to hatchery efforts. Peer reviewed scientific evidence shows that adverse ocean conditions have more effect on salmon than any actual river condition could.

It is patently wrong to remove dams on the premise of saving salmon when there is no scientific proof that dam removal will accomplish that goal. Dam removal activists “think” that they have the solution, but are you willing to pay for their presumptions? They certainly aren’t. They are never willing to pony up the money for their wild ideas.

Salmon are being used as an excuse. If salmon were the real reason behind the push for dam removal, then the salmon interests should be willing to stop fishing for one year to allow for increased returns. But that will not happen; they want others to make the sacrifice. The real agenda behind dam removal is control of our natural resources and people. There is ample proof of this in the recent revised Karuk tribe constitution.

Recently released scientific studies have shown that the salmon declines on rivers that have no dams are the same as they are for dammed rivers. Still the dam removal activists persist in their agenda, regardless of the science that says they are wrong. Local Tribal activists claim that trucking fish around the dams won’t work, they have no proof, but they just keep saying it.

They claim there is enough water to support salmon and yet, recent peer reviewed scientific studies have shown that there is 30% more water coming down the river now than there was before the dams were built. Environmental activist claims to battle for renewable energy and yet dams that provide clean, renewable power to 16% of the United States have come under increasing attack.

Teresa and Tony Hacking

The Mid Klamath Watershed Council wishes to honor the life of Tony Hacking, our MKWC Board president, who passed away on March 2, 2007 from a rare form of cancer at the age of 50. Along with being a full-time wildlife biologist for the USFS Orleans Ranger District, on the school board of Junction Elementary, and a very involved father and husband, Tony provided strong leadership to our organization since its inception in 2002. His respect for the natural world informed many aspects of his life, including his love of fishing, his participation in watershed education events in our local schools and the community, and frequent trips to the backcountry. Tony was committed to improving public and private land management through a combination of scientific study, and tribal and local knowledge. His life was celebrated on March 10, 2007, at the Panamnik Building in Orleans with family and friends sharing many stories, laughter and tears throughout the day. A fund has been created to help with school tuition for Tony and Teresa’s three children: Tiana, Sean, and Daniel. Please send donations to: The Hacking Family Fund, PO Box 426, Somes Bar, CA 95568. We will miss you, Tony.
cold-water regualrual areas for fish. At Stanshaw and Sandy Bar Creeks, students enhanced step pool pathways that would decrease gradient and provide easy access for juvenile fish. Their work also helped to concentrate fl ows into the Klamath River and side channel pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools. Other youth projects were learning how to calculate river pools.
Wondering about Burn Permits?
pile burning and broadcast burning for residents in Humboldt County

The North Coast Air Quality Management District requires a Call the Air Quality Management District at (707) 443-3093 for more details and to obtain an application. A Smoke Management Plan is also required if you are burning multiple piles, broadcast burning, or creating smoke after dusk (when there are potential public impacts due to the smoke). Obtain your Air Quality permits early in the year, since they expire December 31st. Applications are available at the Eureka office at 2300 Myrtle Ave and at the MKWC office in Orains. Permits for 2008 will be available in December. For Broadcast Burning CallFire/California Department of Forestry (CDF) Private land is considered a State Management Area, so it falls under the jurisdiction of the CDF. However, due to our location, the USFS acts on behalf of indigenous basketry management fire-safing the forest Luna Latimer

burning, the Orleans/Somes Bar Fire Safe Council has begun to use prescribed fire for cultural resources such as hazel and to maintain the effectiveness of fuelbreaks around the wildland-urban interface. Working with the Karuk Indigenous Basketweavers, U.S. Forest Service, and CalFire, the Fire Safe Council has treated several basketry stands with low intensity understory broadcast burns after thinning and brushing.

Many people and efforts contributed to this project. The crews went to all who have participated! So far, we have been able to brush out and burn over 10 acres of hazel on participating private lands. Many areas are now growing beautiful shoots that will be made available to the basketweavers. This work has benefited all partners substantially.

The Forest Service gets a fire safe stretch of road through private property, the landowner gets a healthier and more fire safe forest, and the basketweavers get access to restored basketry stands. Many of our local basketweavers are elderly, so it is important that they are able to get materials that are near a road. Doing projects on private lands, which often have Forest Service roads going through them, is a much quicker and simpler process than the Forest Service trying to do similar work on the lands they manage, providing basketweavers with an opportunity to harvest quality shoots while making the roads safer and more beautiful for everyone.

If you have a hazel stand on your property, check with the USFS to see if it is a permissible burn day in our zone (zone 2 below 1000 elevation).
For Broadcast Burning The Orleans/Somes Bar Fire Safe Council.

MKWC hosted a series of creek mouth enhancement workdays. These workdays often involve rafting between creeks and always involve spending refreshing time in the cool water on a hot summer day. These workdays are fun, as well as educational and beneficial to the fish. You are welcome to join us for workdays in early October. Please call MKWC to find out dates and sign up at (530) 627-3202.

This summer, with funding assistance from the Bella Vista Foundation, Weitchpec Weeds

A lot of times, we think about a weed as something that is not good. But a weed can be eye-catching and more important when there isn’t a lot of it in an area. There are only ten areas known to have meadow knapweed in Siskiyou, Humboldt and Del Norte counties. Meadow knapweed is mostly found in Oregon and Washington, but Weitchpec has some too. With some effort, we may be able to get rid of meadow knapweed in our area. For the past few years, MKWC worked with U.S. Forest Service and California Department of Food and Agriculture funds to find, treat and keep an eye on meadow knapweed in Weitchpec. We have also been able to get Weitchpec Elementary School involved with the effort. This summer, we found out that this funding will continue for the next two years. MKWC plans on distributing some of this money to the Yurok Tribe so that they can hire locals to work on this project, which is within the Yurok Reservation.

MKWC wants to thank Lisa Hoover, botanist for the Six Rivers National Forest, for her continued dedication to treating weed populations in the Mid Klamath and her investment in MKWC as a partner in this effort.

Weitchpec Weeds

LaVerne Glaze, Karuk Basketweaver

The Karuk Basketweavers have been using fire as a tool for a long time. By burning certain basket materials, such as hazel and beargrass, basketweavers get long, straight, strong shoots for their baskets. This burning also helps improve acorn crops, maintain meadows for wildlife and hunting, and increase berry production, among other things. In an effort to understand some of the benefits and impacts of low-intensity burning, the Orleans/Somes Bar Fire Safe Council has begun to use prescribed fire for cultural resources such as hazel and to maintain the effectiveness of fuelbreaks around the wildland-urban interface. Working with the Karuk Indigenous Basketweavers, U.S. Forest Service, and CalFire, the Fire Safe Council has treated several basketry stands with low intensity understory broadcast burns after thinning and brushing. Many people and efforts contributed to this project. The crews went to all who have participated! So far, we have been able to brush out and burn over 10 acres of hazel on participating private lands. Many areas are now growing beautiful shoots that will be made available to the basketweavers. This work has benefited all partners substantially.

The Forest Service gets a fire safe stretch of road through private property, the landowner gets a healthier and more fire safe forest, and the basketweavers get access to restored basketry stands. Many of our local basketweavers are elderly, so it is important that they are able to get materials that are near a road. Doing projects on private lands, which often have Forest Service roads going through them, is a much quicker and simpler process than the Forest Service trying to do similar work on the lands they manage, providing basketweavers with an opportunity to harvest quality shoots while making the roads safer and more beautiful for everyone.

If you have a hazel stand on your property, check with the USFS to see if it is a permissible burn day in our zone (zone 2 below 1000 elevation).

For Broadcast Burning The Orleans/Somes Bar Fire Safe Council.

MKWC hosted a series of creek mouth enhancement workdays. These workdays often involve rafting between creeks and always involve spending refreshing time in the cool water on a hot summer day. These workdays are fun, as well as educational and beneficial to the fish. You are welcome to join us for workdays in early October. Please call MKWC to find out dates and sign up at (530) 627-3202.

This summer, with funding assistance from the Bella Vista Foundation, Weitchpec Weeds

A lot of times, we think about a weed as something that is not good. But a weed can be eye-catching and more important when there isn’t a lot of it in an area. There are only ten areas known to have meadow knapweed in Siskiyou, Humboldt and Del Norte counties. Meadow knapweed is mostly found in Oregon and Washington, but Weitchpec has some too. With some effort, we may be able to get rid of meadow knapweed in our area. For the past few years, MKWC worked with U.S. Forest Service and California Department of Food and Agriculture funds to find, treat and keep an eye on meadow knapweed in Weitchpec. We have also been able to get Weitchpec Elementary School involved with the effort. This summer, we found out that this funding will continue for the next two years. MKWC plans on distributing some of this money to the Yurok Tribe so that they can hire locals to work on this project, which is within the Yurok Reservation.

MKWC wants to thank Lisa Hoover, botanist for the Six Rivers National Forest, for her continued dedication to treating weed populations in the Mid Klamath and her investment in MKWC as a partner in this effort.

Weitchpec Weeds

LaVerne Glaze, Karuk Basketweaver
Red Alder - *Alnus rubra* - akvitip

Blythe Reis

How Coyote Freed Salmon for the People

Georgia Orcutt (1940) Karok Myths and Formulas – E.W. Gifford

Nobody got fish. No fish in river. After a while Coyote knew the two girls at Amakatram had fish. He had been thinking about "How am I going to fix it?" He took some alder bark. He make it look like backbone of fish: He fixed it all nice so it looked like backbone of fish. Then he put on deer marrow (put deer marrow on his imitation fish). When he fixed it up nice, that was the time he went up to Amakatram. Coyote came from right here (Panamik).

When he go up there, he go to the house where the two Ixkareyav girls living. He talked with them girls. They were cooking acorns. They gave Coyote acorns to eat. When they give him the acorns, he took his imitation fish from his quiver (kavakt) and said, "I'm going to cook fish." It looked like them girls look at each other and asked, "Where did he get fish?" Nobody's got fish." They thought this as they looked at each other. When Coyote cooked it, it looked like grease was dripping from it. It was the deer marrow. He never offered them any to eat. He pretended to eat it all himself.

Later in the evening the girls ate acorns. They never eat fish. They had no sweetbough, so they had to let Coyote sleep by the fire in their house. Coyote just lay there, making believe he was asleep. After a while it looked like the girls were talking to see if he was asleep. He kept snoring away, but heard them all the time, for he was only pretending to sleep. After a while, one girl said, "I think he is asleep now," for they heard him snoring away.

The girls got up and went outside. Coyote lay there snoring away. Coyote went outside. He know where the fish was. He had expected the girls would go out sometime during the night and he would have his chance to release the fish, which the girls had impounded in a pond in a cave in the mountainside. Coyote released the fish, and they swam down creek to river. Then Coyote ran away.

Safe & Successful Brush Pile Burning

Building a Good Pile

- Choose spots for pile placement carefully in relation to canopy above. Imagine flames at least twice as tall as your pile is high.
- Cut 4 to 6 feet long and trim excess side branches, for compact piling.
- Pile cut stems parallel to each other. Make sure there is a mixture of fine (as good as available) fuels on the bottom, and heavier fuels on top. Heavier brush on top will help compact pile.
- Make sure the pile doesn't contain clumps of soil.
- If you are piling on a slope, make your pile parallel to the slope so that your pile doesn't slide.
- If you are waiting to burn, cover pile with piece of plastic or waxed paper to keep at least a part of it dry.
- Scrape ground to mineral soil, 2' to 5' around pile, furthest on the downhill side branches, for compact piling.
- If your piles are greater than 4 x 4 ft, you need to use a CBA Non-Standard Burn Permit. Contact us if you need assistance.
- Follow the guidelines on the permit.
- You cannot burn during fire season. Ask us for more information.
- Make sure to specify if you are in Humboldt or Siskiyou County!

Call (866) BURN-DAY (866-287-6329) each day you want to burn. You can call after 4 p.m. the previous day, but the burn day is not official until 9 a.m. of the day you are burning. Most people are in Zone 2 (if you are less than 2000 ft elevation). If you are above 2000 ft, you are in Zone 3.

- Avoid burning on dry, windy days.
- Check to see if weather changes are expected. Postpone burning if shifts in wind or gusty conditions are forecast.
- Have the right tools and equipment:
 - McClods or flat shovels for clearing around piles
 - Propane torch and 2, 3 or 5 gal tank
 - Garden hose or water sprayer
 - Garden hoes or backpack sprayer
 - Have water on hand.
 - Be sure to light low and central in the pile and containing fine fuels to initially light.
- For best luck, use propane torch for lighting.
- Always watch burning piles until dead out.

The Native plant garden thrives

The Native Plant Garden, located behind the Karuk Center in Orleans, continues to evolve in a collaborative and volunteer driven process. A selection of native plants, transplanted last winter by community volunteers, hung on through the heat of summer; and established plants responded vigorously to the cultivation and attention.

Lately the garden has been used for educational events. Field trips in the spring brought all the Orleans and Junction elementary school children to learn about native plants and noxious weeds. In June, 20 visitors attending a Klamath Restoration tour co-sponsored by MKWC and the Pacific Fisheries Institute, enjoyed a dinner in the garden after a long field day. In July, a productive workday brought over 40 people to the garden as part of the Following the Smoke program (see Smoke! on right).

Karuk Tribal members use the Daryl “Day-Pay” McCoye Memorial Park (garden site) for gatherings and funerals. We hope use and enjoyment of the garden will grow, as more native plants become established and educational signs go up throughout the garden.

We are grateful to have received USFS funding for the garden as a “Fire Demonstration” site. Equally important has been the continued energy of hundreds of volunteers over the last 2 years. Garden work parties occur on a regular basis at the garden, bringing people together to work and learn about native plants and noxious weeds. Be sure to visit the Native Plant Garden, for a walk, a picnic, or for an event. It belongs to you!

Sources

Plants and the People – The Ethnobotany of the Karuk Tribe
Gardening with Native Plants of the Pacific Northwest – Arthur R. Kruckeberg
Karok Myths – A.L. Kroeber and E.W. Gifford
Karok Ethnobotany – Sara M. Schenck and E.W. Gifford
Sacred Plant Medicine - Stephen Harrod Buhner

Following the Smoke!

Many, many thanks to the Following the Smoke participants and other volunteers!

The USFS “Passport in Time” (PIT) program collaborates with the Karuk Tribal Basketweavers in hosting a local week-long event each July called “Following the Smoke”. Participants, from all over the country, learn about Karuk traditional management, cultural resources, and basketweaving and volunteer on restoration projects in the community. This year, as a part of their activities, 30 of their group came to a productive workday in the Native Plant Garden. The volunteers also participated in a MKWC sponsored Creek Mouth Enhancement project, see article on page 9.

In a true collaborative event, the PIT participants joined the engineers from the Happy Camp Noxious Weeds Crew (USFS KNF), USFS Orleans fire personnel, AmeriCorps volunteers, MKWC staff, and community volunteers. After discussion of use of native plants as a management tool at the site, the group was split into small energetic teams to tackle a variety of tasks. In just a few hours the volunteers accomplished fire line construction (in preparation for a fall burn), noxious weeds abatement (English Ivy, Scotch Broom), trail maintenance, weeding, and watering. With so much concerted energy, a visible transformation occurred!

While the development of the Garden at some times seems to move slowly, it is events such as this that rekindle the excitement about this site and the opportunities for education and inspiration it can afford. Thank you everyone!
restoring Spring-run Chinook in the Klamath and its tributaries

Crescent Calmpong

Historical Impacts to Spring Chinook in the Klamath Basin

Will Harling

The 2007 annual, Spring Chinook and Summer Steelhead Dives on the Salmon River took place July 25. This was the first official dive on the Salmon River since put on in conjunction with the 2nd Annual Spring Chinook conflag, hosted by the Salmonid Restoration Federation (SRF), the Salmon River Restoration Council (SRRC) and MKWC, among many others. Speakers from att with record setting catches.

Oncorhynchus tshawytscha, or Chinook Salmon, has two distinct runs in the Klamath Basin: Fall and Spring-run Chinook. The times run a slightly different, however, they have varying times for residency in the river. Spring-run Chinook migrate into the basin in late spring and spend the months prior to spawning maturing in the river rather than the ocean, hiding out in cold, watersheds often in September and October. Being able to travel farther up in the watershed during the late spring and summer months gives them access to the colder waterheads for spawning in September and October. They tend to be staying in colder water and wait until the water temperature drops to about 60°F before spawning.

A second key is to restore access to upstream headwater areas for spawning, summer holding, and juvenile rearing. The limited number of Fall Chinook that migrate to the Klamath Basin once had annual run numbers of over 200,000. Now, all access is blocked at river mile 190, where Iron Gate Dam is located, the lower-most dam on the Klamath River.

A third means to recovery is to protect, restore and enhance the lowermost reaches of our coastal rivers including estuaries, salmon spawning grounds and floodplains. Estuaries are important rearing habitats for anadromous fish. Here juvenile salmon’s bodies undergo important bodily changes that allow them to live in the ocean during their adult life.

The last key is that restoration needs to be thought of in terms of the watershed and not just individual streams. The 100,000 Spring-run Chinook that returned to the Klamath Basin, the watershed must be thought of as one unit, i.e. anything done to the top of the watershed will affect the bottom and vice-versa. Looking at restoration plus way will ensure that there will be a healthy watershed that supports harvests for the people of the watershed and a healthy fishery in general.

The Karak Tribe, MKWC, SRRC, USFS, Calif DFG, and others have been implementing restoration projects and policies to protect Spring-run Chinook in the Klamath River system.

These efforts include poaching prevention, road decommissioning, reintroduction of historic fish regimes, fish passage improvement, curtailing riparian sport fishing seasons, stricter regulations on suction dredging, etc. Many of these efforts involve volunteers helping to make it happen. If you want to get involved, call us at MKWC!

Butte Creek Spring Chinook Recovery

Butte Creek, located just outside of Chico in the Sacramento Valley, has the largest run of Spring Run Chinook salmon in California. Since 1995, the average run has been nearly 10,000 fish a year. Unfortunately, the run wasn’t always 10,000 fish a year. Butte Creek is cold and clear, yet it has a spring spawning population that can produce hundreds of thousands of young salmon per year. Despite record runs returning to Butte Creek, the population has been seriously reduced by the summer deaths of hundreds and sometimes thousands of spring run salmon that are listed as threatened by both State and Federal agencies. During the summer of 2002, as PG&E, who operates the DeSabla-Centerville hydroelectric project on Butte Creek which includes an inter-basin transfer of water, completed the drilling of the shallow Round Valley Reservoir on the West Branch of the Feather River, temperatures in the import water coming into Butte Creek hit lethal modes. This triggered a disease outbreak that caught all the agencies by surprise. Department of Fish and Game (DFG) biologists initially said “no problem,” as there was a huge run.

Early estimates were that more than 15,000 fish were in the creek. Local residents were screaming as the smell of dead, rotting salmon was overwhelming. Final results from DFG surveys were that a stunning 1,750 carcasses were counted which translated to approximately 7,000 pre-spawn mortalities.

Recognizing the problem, the agencies, most notably NOAA Fisheries, encouraged PG&E to consider alternatives to keep the fish alive in 2003. Unfortunately, DFG mixed any efforts in 2003 and simply did a better job counting the mortalities. Once again, lack of management led to over 11,000 salmon mortalities before spawning in 2003, leaving only 5,000 of a 17,000 fish run to spawn. Again, everything but PG&E operations was blamed. Using limited research data, DFG claims that this is natural and unavoidable, and returning the creek to a more natural flow regime would, in fact, do more harm than good for the fish.

Others feel quite differently about the situation. The Friends of Butte Creek, California Sportfishing Protection Alliance, Sacramento River Preservation Trust, Pacific Coast Federation of Fishermen’s Associations, Friends of the River, Northern California Council Federation of Flyfishers, and Earthjustice have all filed 60-day notices of intent to sue for failure to protect these spring run salmon from the harmful effects of PG&E operations. Over the last several years, summer weather conditions have been much better and some PG&E operational changes have helped moderate water temperatures reducing mortalities to several hundred a year. The DeSabla-Centerville hydroelectric project on Butte Creek is currently undergoing relicensing with the Federal Energy Regulatory Commission, and efforts are underway to ensure that these fish have the best chance possible to survive. Butte Creek spring run salmon have shown up in the Feather River, Battle Creek and Clear Creek indicating that they may be the source population for future recovery in other watersheds. The fish’s value to all of us is something we are barely able to recognize. For more complete data visit the website of Friends of Butte Creek and stay tuned for our online Salmoncam. www.buttecreek.org